Notes

1. As the amount and timing of the ongoing contributions is identical in each option these are ignored.
2. Under Option A payments are split equally over each year. This means the whole amount is available to be invested at the start of the year and nothing at the end. As a reasonable approximation for this analysis half the total is treated as available for the whole year.
3. Under Option B payments are made at the start of the year.
4. The average rate currently being earned on short term deposits is 0.73% and this is unlikely to vary significantly over this period.

Deficit Payments

	2014/15	2015/16	2016/17	Total
	f	\pm	f	f
Option A	1,410,696	1,474,702	1,541,612	4,427,010
Option B	1,371,484	1,433,710	1,498,760	4,303,954
Saving on B	39,212	40,992	42,852	123,056

Investment Comparison				
	2014/15	2015/16	2016/17	Total
	f	£	f	£
Option A	1,410,696	1,474,702	1,541,612	
Half Invested	705,348	737,351	770,806	
Interest Earned	5,149	5,383	5,627	16,159
Saving on B	39,212	40,992	42,852	123,056
Net Saving on B	34,063	35,609	37,225	106,897
Rate of Interest to equal B	5.56\%	5.56\%	5.56\%	

It is extremely unlikely that the Council will be able to earn more than 5% on temporary investments during this period. Therefore, Option B is recommended as it is less expensive than Option A.

Notes

1. To fund E would probably require calling back early a long term deposit currently earning 1.3% per annum, and so this rate has been used in the calculation below.
2. All payments are made at the start of the year.

Deficit Payments

	$\begin{gathered} 2014 / 15 \\ £ \end{gathered}$	$\begin{gathered} \text { 2015/16 } \\ £ \end{gathered}$	$\begin{gathered} \text { 2016/17 } \\ £ \end{gathered}$	Total f
Option B	1,371,484	1,433,710	1,498,760	4,303,954
Option E	4,065,536	0	0	4,065,536
	-2,694,052	1,433,710	1,498,760	238,418
Start balance	2,694,052	2,729,075	1,312,204	
Less payment	0	-1,433,710	-1,498,760	
Invested	2,694,052	1,295,365	-186,556	
Add interest	35,023	16,840	-2,425	
End balance	2,729,075	1,312,204	-188,981	

This shows that retaining the funds and investing them at 1.3% would leave a $£ 189,000$ shortfall compared to Option E .

	2014/15	2015/16	2016/17
	£	£	£
Start balance	2,694,052	2,850,307	1,498,760
Less payment	0	-1,433,710	-1,498,760
Invested	2,694,052	1,416,597	0
Add interest	156,255	82,163	0
End balance	2,850,307	1,498,760	0

This shows that if it was possible to invest the balance at 5.8% there would be no overall saving from Option E. As stated above, it is unlikely that an interest rate close to 5.8% will be seen before the end of $2016 / 17$.

